Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.438
Filtrar
1.
J Nanobiotechnology ; 22(1): 231, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720360

RESUMEN

BACKGROUND: Circulating tumor cells (CTCs) are considered as a useful biomarker for early cancer diagnosis, which play a crucial role in metastatic process. Unfortunately, the tumor heterogeneity and extremely rare occurrence rate of CTCs among billions of interfering leukocytes seriously hamper the sensitivity and purity of CTCs isolation. METHODS: To address these, we firstly used microfluidic chips to detect the broad-spectrum of triple target combination biomarkers in CTCs of 10 types of cancer patients, including EpCAM, EGFR and Her2. Then, we constructed hybrid engineered cell membrane-camouflaged magnetic nanoparticles (HE-CM-MNs) for efficient capture of heterogeneous CTCs with high-purity, which was enabled by inheriting the recognition ability of HE-CM for various CTCs and reducing homologous cell interaction with leukocytes. Compared with single E-CM-MNs, HE-CM-MNs showed a significant improvement in the capture efficiency for a cell mixture, with an efficiency of 90%. And the capture efficiency of HE-CM-MNs toward 12 subpopulations of tumor cells was ranged from 70 to 85%. Furthermore, by using HE-CM-MNs, we successfully isolated heterogeneous CTCs with high purity from clinical blood samples. Finally, the captured CTCs by HE-CM-MNs could be used for gene mutation analysis. CONCLUSIONS: This study demonstrated the promising potential of HE-CM-MNs for heterogeneous CTCs detection and downstream analysis.


Asunto(s)
Biomarcadores de Tumor , Membrana Celular , Separación Celular , Nanopartículas de Magnetita , Células Neoplásicas Circulantes , Células Neoplásicas Circulantes/patología , Células Neoplásicas Circulantes/metabolismo , Humanos , Nanopartículas de Magnetita/química , Separación Celular/métodos , Línea Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/química , Biomarcadores de Tumor/sangre , Receptor ErbB-2 , Molécula de Adhesión Celular Epitelial/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias
2.
Sci Rep ; 14(1): 10646, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724530

RESUMEN

Individual theranostic agents with dual-mode MRI responses and therapeutic efficacy have attracted extensive interest due to the real-time monitor and high effective treatment, which endow the providential treatment and avoid the repeated medication with side effects. However, it is difficult to achieve the integrated strategy of MRI and therapeutic drug due to complicated synthesis route, low efficiency and potential biosafety issues. In this study, novel self-assembled ultrasmall Fe3O4 nanoclusters were developed for tumor-targeted dual-mode T1/T2-weighted magnetic resonance imaging (MRI) guided synergetic chemodynamic therapy (CDT) and chemotherapy. The self-assembled ultrasmall Fe3O4 nanoclusters synthesized by facilely modifying ultrasmall Fe3O4 nanoparticles with 2,3-dimercaptosuccinic acid (DMSA) molecule possess long-term stability and mass production ability. The proposed ultrasmall Fe3O4 nanoclusters shows excellent dual-mode T1 and T2 MRI capacities as well as favorable CDT ability due to the appropriate size effect and the abundant Fe ion on the surface of ultrasmall Fe3O4 nanoclusters. After conjugation with the tumor targeting ligand Arg-Gly-Asp (RGD) and chemotherapy drug doxorubicin (Dox), the functionalized Fe3O4 nanoclusters achieve enhanced tumor accumulation and retention effects and synergetic CDT and chemotherapy function, which serve as a powerful integrated theranostic platform for cancer treatment.


Asunto(s)
Imagen por Resonancia Magnética , Nanomedicina Teranóstica , Imagen por Resonancia Magnética/métodos , Nanomedicina Teranóstica/métodos , Animales , Ratones , Humanos , Doxorrubicina/química , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Línea Celular Tumoral , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapéutico , Succímero/química , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología
3.
J Am Chem Soc ; 146(19): 13176-13182, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38691505

RESUMEN

Synthetic cells can be constructed from diverse molecular components, without the design constraints associated with modifying 'living' biological systems. This can be exploited to generate cells with abiotic components, creating functionalities absent in biology. One example is magnetic responsiveness, the activation and modulation of encapsulated biochemical processes using a magnetic field, which is absent from existing synthetic cell designs. This is a critical oversight, as magnetic fields are uniquely bio-orthogonal, noninvasive, and highly penetrative. Here, we address this by producing artificial magneto-responsive organelles by coupling thermoresponsive membranes with hyperthermic Fe3O4 nanoparticles and embedding them in synthetic cells. Combining these systems enables synthetic cell microreactors to be built using a nested vesicle architecture, which can respond to alternating magnetic fields through in situ enzymatic catalysis. We also demonstrate the modulation of biochemical reactions by using different magnetic field strengths and the potential to tune the system using different lipid compositions. This platform could unlock a wide range of applications for synthetic cells as programmable micromachines in biomedicine and biotechnology.


Asunto(s)
Células Artificiales , Campos Magnéticos , Células Artificiales/química , Células Artificiales/metabolismo , Nanopartículas de Magnetita/química
4.
J Nanobiotechnology ; 22(1): 245, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38735921

RESUMEN

BACKGROUND: The general sluggish clearance kinetics of functional inorganic nanoparticles tend to raise potential biosafety concerns for in vivo applications. Renal clearance is a possible elimination pathway for functional inorganic nanoparticles delivered through intravenous injection, but largely depending on the surface physical chemical properties of a given particle apart from its size and shape. RESULTS: In this study, three small-molecule ligands that bear a diphosphonate (DP) group, but different terminal groups on the other side, i.e., anionic, cationic, and zwitterionic groups, were synthesized and used to modify ultrasmall Fe3O4 nanoparticles for evaluating the surface structure-dependent renal clearance behaviors. Systematic studies suggested that the variation of the surface ligands did not significantly increase the hydrodynamic diameter of ultrasmall Fe3O4 nanoparticles, nor influence their magnetic resonance imaging (MRI) contrast enhancement effects. Among the three particle samples, Fe3O4 nanoparticle coated with zwitterionic ligands, i.e., Fe3O4@DMSA, exhibited optimal renal clearance efficiency and reduced reticuloendothelial uptake. Therefore, this sample was further labeled with 99mTc through the DP moieties to achieve a renal-clearable MRI/single-photon emission computed tomography (SPECT) dual-modality imaging nanoprobe. The resulting nanoprobe showed satisfactory imaging capacities in a 4T1 xenograft tumor mouse model. Furthermore, the biocompatibility of Fe3O4@DMSA was evaluated both in vitro and in vivo through safety assessment experiments. CONCLUSIONS: We believe that the current investigations offer a simple and effective strategy for constructing renal-clearable nanoparticles for precise disease diagnosis.


Asunto(s)
Riñón , Imagen por Resonancia Magnética , Tomografía Computarizada de Emisión de Fotón Único , Animales , Imagen por Resonancia Magnética/métodos , Ratones , Tomografía Computarizada de Emisión de Fotón Único/métodos , Ligandos , Riñón/diagnóstico por imagen , Riñón/metabolismo , Línea Celular Tumoral , Medios de Contraste/química , Femenino , Ratones Endogámicos BALB C , Humanos , Distribución Tisular , Neoplasias/diagnóstico por imagen , Nanopartículas de Magnetita/química , Nanopartículas/química
5.
Mikrochim Acta ; 191(6): 303, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709340

RESUMEN

A platform was designed based on Fe3O4 and CsPbBr3@SiO2 for integrated magnetic enrichment-fluorescence detection of Salmonella typhimurium, which significantly simplifies the detection process and enhances the working efficiency. Fe3O4 served as a magnetic enrichment unit for the capture of S. typhimurium. CsPbBr3@SiO2 was employed as a fluorescence-sensing unit for quantitative signal output, where SiO2 was introduced to strengthen the stability of CsPbBr3, improve its biomodificability, and prevent lead leakage. More importantly, the SiO2 shell shows neglectable absorption or scattering towards fluorescence, making the CsPbBr3@SiO2 exhibit a high quantum yield of 74.4%. After magnetic enrichment, the decreasing rate of the fluorescence emission intensity of the CsPbBr3@SiO2 supernatant at 527 nm under excitation light at UV 365 nm showed a strong linear correlation with S. typhimurium concentration of 1 × 102~1 × 108 CFU∙mL-1, and the limit of detection (LOD) reached 12.72 CFU∙mL-1. This platform has demonstrated outstanding stability, reproducibility, and resistance to interference, which provides an alternative for convenient and quantitative detection of S. typhimurium.


Asunto(s)
Colorantes Fluorescentes , Límite de Detección , Salmonella typhimurium , Dióxido de Silicio , Salmonella typhimurium/aislamiento & purificación , Dióxido de Silicio/química , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia/métodos , Plomo/química , Sistemas de Atención de Punto , Sulfuros/química , Nanopartículas de Magnetita/química , Humanos
6.
Sci Adv ; 10(19): eadj1468, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38718125

RESUMEN

Genome-wide CRISPR screens have provided a systematic way to identify essential genetic regulators of a phenotype of interest with single-cell resolution. However, most screens use live/dead readout of viability to identify factors of interest. Here, we describe an approach that converts cell proliferation into the degree of magnetization, enabling downstream microfluidic magnetic sorting to be performed. We performed a head-to-head comparison and verified that the magnetic workflow can identify the same hits from a traditional screen while reducing the screening period from 4 weeks to 1 week. Taking advantage of parallelization and performance, we screened multiple mesenchymal cancer cell lines for their dependency on cell proliferation. We found and validated pan- and cell-specific potential therapeutic targets. The method presented provides a nanoparticle-enabled approach means to increase the breadth of data collected in CRISPR screens, enabling the rapid discovery of drug targets for treatment.


Asunto(s)
Proliferación Celular , Nanopartículas de Magnetita , Humanos , Proliferación Celular/efectos de los fármacos , Nanopartículas de Magnetita/química , Línea Celular Tumoral , Fenotipo , Sistemas CRISPR-Cas
7.
J Biosci ; 492024.
Artículo en Inglés | MEDLINE | ID: mdl-38726825

RESUMEN

Bacterial species referred to as magnetotactic bacteria (MTB) biomineralize iron oxides and iron sulphides inside the cell. Bacteria can arrange themselves passively along geomagnetic field lines with the aid of these iron components known as magnetosomes. In this study, magnetosome nanoparticles, which were obtained from the taxonomically identified MTB isolate Providencia sp. PRB-1, were characterized and their antibacterial activity was evaluated. An in vitro test showed that magnetosome nanoparticles significantly inhibited the growth of Staphylococcus sp., Pseudomonas aeruginosa, and Klebsiella pneumoniae. Magnetosomes were found to contain cuboidal iron crystals with an average size of 42 nm measured by particle size analysis and scanning electron microscope analysis. The energy dispersive X-ray examination revealed that Fe and O were present in the extracted magnetosomes. The extracted magnetosome nanoparticles displayed maximum absorption at 260 nm in the UV-Vis spectrum. The distinct magnetite peak in the Fourier transform infrared (FTIR) spectroscopy spectra was observed at 574.75 cm-1. More research is needed into the intriguing prospect of biogenic magnetosome nanoparticles for antibacterial applications.


Asunto(s)
Antibacterianos , Magnetosomas , Providencia , Pseudomonas aeruginosa , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Pseudomonas aeruginosa/efectos de los fármacos , Magnetosomas/química , Magnetosomas/metabolismo , Providencia/química , Providencia/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/crecimiento & desarrollo , Nanopartículas/química , Pruebas de Sensibilidad Microbiana , Staphylococcus/efectos de los fármacos , Staphylococcus/crecimiento & desarrollo , Tamaño de la Partícula , Hierro/química , Hierro/metabolismo , Nanopartículas de Magnetita/química
8.
Biomed Phys Eng Express ; 10(4)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38692266

RESUMEN

Magnetic nanoparticle hyperthermia (MNPH) has emerged as a promising cancer treatment that complements conventional ionizing radiation and chemotherapy. MNPH involves injecting iron-oxide nanoparticles into the tumor and exposing it to an alternating magnetic field (AMF). Iron oxide nanoparticles produce heat when exposed to radiofrequency AMF due to hysteresis loss. Minimizing the non-specific heating in human tissues caused by exposure to AMF is crucial. A pulse-width-modulated AMF has been shown to minimize eddy-current heating in superficial tissues. This project developed a control strategy based on a simplified mathematical model in MATLAB SIMULINK®to minimize eddy current heating while maintaining a therapeutic temperature in the tumor. A minimum tumor temperature of 43 [°C] is required for at least 30 [min] for effective hyperthermia, while maintaining the surrounding healthy tissues below 39 [°C]. A model predictive control (MPC) algorithm was used to reach the target temperature within approximately 100 [s]. As a constrained MPC approach, a maximum AMF amplitude of 36 [kA/m] and increment of 5 [kA/m/s] were applied. MPC utilized the AMF amplitude as an input and incorporated the open-loop response of the eddy current heating in its dynamic matrix. A conventional proportional integral (PI) controller was implemented and compared with the MPC performance. The results showed that MPC had a faster response (30 [s]) with minimal overshoot (1.4 [%]) than PI controller (115 [s] and 5.7 [%]) response. In addition, the MPC method performed better than the structured PI controller in its ability to handle constraints and changes in process parameters.


Asunto(s)
Algoritmos , Hipertermia Inducida , Neoplasias , Hipertermia Inducida/métodos , Humanos , Neoplasias/terapia , Nanopartículas de Magnetita/uso terapéutico , Nanopartículas de Magnetita/química , Simulación por Computador , Campos Magnéticos , Modelos Teóricos , Temperatura , Nanopartículas Magnéticas de Óxido de Hierro/química , Modelos Biológicos
9.
Anal Chim Acta ; 1306: 342623, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692796

RESUMEN

BACKGROUND: Brain-derived exosomes circulate in the bloodstream and other bodily fluids, serving as potential indicators of neurological disease progression. These exosomes present a promising avenue for the early and precise diagnosis of neurodegenerative conditions. Notably, miRNAs found in plasma extracellular vesicles (EVs) offer distinct diagnostic benefits due to their stability, abundance, and resistance to breakdown. RESULTS: In this study, we introduce a method using transferrin conjugated magnetic nanoparticles (TMNs) to isolate these exosomes from the plasma of patients with neurological disorders. This TMNs technique is both quick (<35 min) and cost-effective, requiring no high-priced ingredients or elaborate equipment for EV extraction. Our method successfully isolated EVs from 33 human plasma samples, including those from patients with Parkinson's disease (PD), Multiple Sclerosis (MS), and Dementia. Using quantitative polymerase chain reaction (PCR) analysis, we evaluated the potential of 8 exosomal miRNA profiles as biomarker candidates. Six exosomal miRNA biomarkers (miR-195-5p, miR-495-3p, miR-23b-3P, miR-30c-2-3p, miR-323a-3p, and miR-27a-3p) were consistently linked with all stages of PD. SIGNIFICANCE: The TMNs method provides a practical, cost-efficient way to isolate EVs from biological samples, paving the way for non-invasive neurological diagnoses. Furthermore, the identified miRNA biomarkers in these exosomes may emerge as innovative tools for precise diagnosis in neurological disorders including PD.


Asunto(s)
Exosomas , Nanopartículas de Magnetita , MicroARNs , Enfermedad de Parkinson , Transferrina , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/sangre , Exosomas/química , MicroARNs/sangre , Nanopartículas de Magnetita/química , Transferrina/química , Encéfalo/metabolismo , Biomarcadores/sangre , Masculino , Femenino
10.
Sci Adv ; 10(18): eadl2991, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38691615

RESUMEN

Amyloid fibrils of tau are increasingly accepted as a cause of neuronal death and brain atrophy in Alzheimer's disease (AD). Diminishing tau aggregation is a promising strategy in the search for efficacious AD therapeutics. Previously, our laboratory designed a six-residue, nonnatural amino acid inhibitor D-TLKIVW peptide (6-DP), which can prevent tau aggregation in vitro. However, it cannot block cell-to-cell transmission of tau aggregation. Here, we find D-TLKIVWC (7-DP), a d-cysteine extension of 6-DP, not only prevents tau aggregation but also fragments tau fibrils extracted from AD brains to neutralize their seeding ability and protect neuronal cells from tau-induced toxicity. To facilitate the transport of 7-DP across the blood-brain barrier, we conjugated it to magnetic nanoparticles (MNPs). The MNPs-DP complex retains the inhibition and fragmentation properties of 7-DP alone. Ten weeks of MNPs-DP treatment appear to reverse neurological deficits in the PS19 mouse model of AD. This work offers a direction for development of therapies to target tau fibrils.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Nanopartículas de Magnetita , Proteínas tau , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Proteínas tau/metabolismo , Proteínas tau/química , Ratones , Humanos , Nanopartículas de Magnetita/química , Amiloide/metabolismo , Amiloide/química , Ratones Transgénicos , Conducta Animal/efectos de los fármacos , Péptidos/química , Péptidos/farmacología , Agregación Patológica de Proteínas/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/efectos de los fármacos
11.
Anal Chim Acta ; 1308: 342647, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38740456

RESUMEN

BACKGROUND: Presently, glyphosate (Gly) is the most extensively used herbicide globally, Nevertheless, its excessive usage has increased its accumulation in off-target locations, and aroused concerns for food and environmental safety. Commonly used detection methods, such as high-performance liquid chromatography and gas chromatography, have limitations due to expensive instruments, complex pre-processing steps, and inadequate sensitivity. Therefore, a facile, sensitive, and reliable Gly detection method should be developed. RESULTS: A photoelectrochemical (PEC) sensor consisting of a three-dimensional polymer phenylethnylcopper/nitrogen-doped graphene aerogel (PPhECu/3DNGA) electrode coupled with Fe3O4 NPs nanozyme was constructed for sensitive detection of Gly. The microscopic 3D network of electrodes offered fast transfer routes for photo-generated electrons and a large surface area for nanozyme loading, allowing high signal output and analytical sensitivity. Furthermore, the use of peroxidase-mimicking Fe3O4 NPs instead of natural enzyme improved the stability of the sensor against ambient temperature changes. Based on the inhibitory effect of Gly on the catalytic activity Fe3O4 NPs, the protocol achieved Gly detection in the range of 5 × 10-10 to 1 × 10-4 mol L-1. Additionally, feasibility of the detection was confirmed in real agricultural matrix including tea, maize seedlings, maize seeds and soil. SIGNIFICANCE: This work achieved facile, sensitive and reliable analysis towards Gly, and it was expected to inspire the design and utilization of 3D architectures in monitoring agricultural chemicals in food and environmental matrix.


Asunto(s)
Técnicas Electroquímicas , Electrodos , Glicina , Glifosato , Grafito , Nitrógeno , Procesos Fotoquímicos , Grafito/química , Glicina/análogos & derivados , Glicina/química , Glicina/análisis , Nitrógeno/química , Polímeros/química , Cobre/química , Geles/química , Herbicidas/análisis , Límite de Detección , Nanopartículas de Magnetita/química , Nanopartículas Magnéticas de Óxido de Hierro/química
12.
J Chromatogr A ; 1725: 464962, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38704923

RESUMEN

Because of the "enterohepatic circulation" of bile acid, liver damage can be reflected by monitoring the content of bile acid in the serum of the organism. To monitor the concentration of 15 bile acids in plasma samples, a new technique of PRiME (process, ruggedness, improvement, matrix effect, ease of use) pass-through cleanup procedure combined with high performance liquid chromatography-tandem quadrupole mass spectrometry (HPLC-MS/MS) was developed. The sorbent used in the PRiME pass-through cleanup procedure is a new type of magnetic organic resin composite nano-material modified by C18 (C18-PS-DVB-GMA-Fe3O4), which has high cleanup efficiency of plasma samples. It also shows good performance in the separation and analysis of 15 kinds of bile acids. Under the optimal conditions, the results show higher cleanup efficiency of C18-PS-DVB-GMA-Fe3O4 with recoveries in the range of 82.1-115 %. The limit of quantitative (LOQs) of 15 bile acids were in the range of 0.033 µg/L-0.19 µg/L, and the RSD values of 15 bile acids were in the range of 3.00-11.9 %. Validation results on linearity, specificity, accuracy and precision, as well as on the application to analysis of 15 bile acids in 100 human plasma samples demonstrate the applicability to clinical studies.


Asunto(s)
Ácidos y Sales Biliares , Límite de Detección , Nanocompuestos , Espectrometría de Masas en Tándem , Humanos , Ácidos y Sales Biliares/sangre , Ácidos y Sales Biliares/química , Espectrometría de Masas en Tándem/métodos , Nanocompuestos/química , Cromatografía Líquida de Alta Presión/métodos , Reproducibilidad de los Resultados , Polímeros/química , Nanopartículas de Magnetita/química
13.
Molecules ; 29(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38731551

RESUMEN

The aim of this study is to solve the problems of the complicated pretreatment and high analytical cost in the detection technology of trace drugs and their metabolites in municipal wastewater. A high-performance magnetic sorbent was fsynthesized for the enrichment of trace drugs and their metabolites in wastewater to develop a magnetic solid-phase extraction pretreatment combined with the acoustic ejection mass spectrometry (AEMS) analytical method. The magnetic nanospheres were successfully prepared by magnetic nanoparticles modified with divinylbenzene and vinylpyrrolidone. The results showed that the linear dynamic range of 17 drugs was 1-500 ng/mL, the recovery was 44-100%, the matrix effect was more than 51%, the quantification limit was 1-2 ng/mL, and the MS measurement was fast. It can be seen that the developed magnetic solid-phase extraction (MSPE) method is a good solution to the problems of the complicated pretreatment and analytical cost in the analysis of drugs in wastewater. The developed magnetic material and acoustic excitation pretreatment coupled with mass spectrometry analysis method can realize the low-cost, efficient enrichment, and fast analysis of different kinds of drug molecules in urban sewage.


Asunto(s)
Drogas Ilícitas , Espectrometría de Masas , Aguas del Alcantarillado , Extracción en Fase Sólida , Aguas del Alcantarillado/análisis , Aguas del Alcantarillado/química , Extracción en Fase Sólida/métodos , Espectrometría de Masas/métodos , Drogas Ilícitas/análisis , Contaminantes Químicos del Agua/análisis , Aguas Residuales/análisis , Aguas Residuales/química , Nanopartículas de Magnetita/química
14.
Bioresour Technol ; 401: 130686, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38599351

RESUMEN

Although there are many microorganisms in nature, the limitations of isolation and cultivation conditions have restricted the development of artificial enhanced remediation technology using functional microbial communities. In this study, an integrated technology of Magnetic Nanoparticle-mediated Enrichment (MME) and Microfluidic Single Cell separation (MSC) that breaks through the bottleneck of traditional separation and cultivation techniques and can efficiently obtain more in situ functional microorganisms from the environment was developed. MME technology was first used to enrich rapidly growing active bacteria in the environment. Subsequently, MSC technology was applied to isolate and incubate functional bacterial communities in situ and validate the degradation ability of individual bacteria. As a result, this study has changed the order of traditional pure culture methods, which are first selected and then cultured, and provided a new method for obtaining non-culturable functional microorganisms.


Asunto(s)
Bacterias , Nanopartículas de Magnetita , Nanopartículas de Magnetita/química , Separación Celular/métodos , Técnicas Analíticas Microfluídicas/métodos , Análisis de la Célula Individual/métodos , Biodegradación Ambiental , Microfluídica/métodos
15.
Mikrochim Acta ; 191(5): 285, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652174

RESUMEN

One significant constraint in the advancement of biosensors is the signal-to-noise ratio, which is adversely affected by the presence of interfering factors such as blood in the sample matrix. In the present investigation, a specific aptamer binding was chosen for its affinity, while exhibiting no binding affinity towards non-target bacterial cells. This selective binding property was leveraged to facilitate the production of magnetic microparticles decorated with aptamers. A novel assay was developed to effectively isolate S. pneumoniae from PBS or directly from blood samples using an aptamer with an affinity constant of 72.8 nM. The capture experiments demonstrated efficiencies up to 87% and 66% are achievable for isolating spiked S. pneumoniae in 1 mL PBS and blood samples, respectively.


Asunto(s)
Aptámeros de Nucleótidos , Dióxido de Silicio , Aptámeros de Nucleótidos/química , Dióxido de Silicio/química , Streptococcus pneumoniae/aislamiento & purificación , Streptococcus pneumoniae/química , Humanos , Técnicas Biosensibles/métodos , Nanopartículas de Magnetita/química
16.
J Hazard Mater ; 471: 134243, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38657506

RESUMEN

Iron-magnetic nanoparticles (Fe-NMPs) are widely used in environmental remediation, while porphyrin-based hybrid materials anchored to silica-coated Fe3O4-nanoparticles (Fe3O4-NPs) have been used for water disinfection purposes. To assess their safety on plants, especially concerning potential environmental release, it was investigated for the first time, the impact on plants of a silica-coated Fe3O4-NPs bearing a porphyrinic formulation (FORM) - FORM@NMP. Additionally, FORM alone and the magnetic nanoparticles without FORM anchored (NH2@NMP) were used for comparison. Wheat (Triticum aestivum L.) was chosen as a model species and was subjected to three environmentally relevant doses during germination and tiller development through root application. Morphological, physiological, and metabolic parameters were assessed. Despite a modest biomass decrease and alterations in membrane properties, no major impairments in germination or seedling development were observed. During tiller phase, both Fe3O4-NPs increased leaf length, and photosynthesis exhibited varied impacts: both Fe3O4-NPs and FORM alone increased pigments; only Fe3O4-NPs promoted gas exchange; all treatments improved the photochemical phase. Regarding oxidative stress, lipid peroxidation decreased in FORM and FORM@NMP, yet with increased O2-• in FORM@NMP; total flavonoids decreased in NH2@NMP and antioxidant enzymes declined across all materials. Phenolic profiling revealed a generalized trend towards a decrease in flavones. In conclusion, these nanoparticles can modulate wheat physiology/metabolism without apparently inducing phytotoxicity at low doses and during short-time exposure. ENVIRONMENTAL IMPLICATION: Iron-magnetic nanoparticles are widely used in environmental remediation and fertilization, besides of new applications continuously being developed, making them emerging contaminants. Soil is a major sink for these nanoparticles and their fate and potential environmental risks in ecosystems must be addressed to achieve more sustainable environmental applications. Furthermore, as the reuse of treated wastewater for agricultural irrigation is being claimed, it is of major importance to disclose the impact on crops of the nanoparticles used for wastewater decontamination, such as those proposed in this work.


Asunto(s)
Germinación , Porfirinas , Triticum , Triticum/crecimiento & desarrollo , Triticum/efectos de los fármacos , Triticum/metabolismo , Germinación/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Nanopartículas de Magnetita/toxicidad , Nanopartículas de Magnetita/química , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Dióxido de Silicio/toxicidad , Dióxido de Silicio/química , Estrés Oxidativo/efectos de los fármacos
17.
Toxicon ; 242: 107707, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38579983

RESUMEN

This research presents the synthesis and characterization of Cu-doped Fe3O4 (Cu-Fe3O4) nanoparticles as a magnetically recoverable and reusable detoxifying agent for the efficient and long-lasting neutralization of bacterial toxins. The nanoparticles were synthesized using the combustion synthesis method and characterized through SEM, XRD, BET, TGA, and VSM techniques. The detoxification potential of Cu-Fe3O4 was compared with traditional formaldehyde (FA) in detoxifying epsilon toxin (ETx) from Clostridium perfringens Type D, the causative agent of enterotoxemia in ruminants. In vivo residual toxicity tests revealed that Cu-Fe3O4 could detoxify ETx at a concentration of 2.0 mg mL-1 within 4 days at room temperature (RT) and 2 days at 37 °C, outperforming FA (12 and 6 days at RT and 37 °C, respectively). Characterization studies using dynamic light scattering (DLS) and circular dichroism (CD) highlighted lower conformational changes in Cu-Fe3O4-detoxified ETx compared to FA-detoxified ETx. Moreover, Cu-Fe3O4-detoxified ETx exhibited exceptional storage stability at 4 °C and RT for 6 months, maintaining an irreversible structure with no residual toxicity. The particles demonstrated remarkable reusability, with the ability to undergo five continuous detoxification batches. This study provides valuable insights into the development of an efficient and safe detoxifying agent, enabling the production of toxoids with a native-like structure. The magnetically recoverable and reusable nature of Cu-Fe3O4 nanoparticles offers practical advantages for easy recovery and reuse in detoxification reactions.


Asunto(s)
Toxinas Bacterianas , Cobre , Formaldehído , Formaldehído/química , Cobre/química , Animales , Toxinas Bacterianas/química , Toxinas Bacterianas/toxicidad , Clostridium perfringens , Nanopartículas de Magnetita/química
18.
Artículo en Inglés | MEDLINE | ID: mdl-38636134

RESUMEN

Herein, a simple, sensitive, and reliable dispersive solid phase extraction was reported for the efficient extraction of sunitinib from biological samples. To facilitate the extraction of the desired analyte from urine and plasma samples, magnetic MIL-101Cr (NH2) @SiO2 @ NiFe2O4 was synthesized by a hydrothermal method and applied as an effective sorbent during the extraction process. After adsorption of the drug using 10 mg of MIL-101Cr (NH2) @ SiO2 @ NiFe2O4 nanoparticles through vortexing (1 min), the sorbent was separatedfrom the sample solution using a magnet. To eluate the drug, the sorbent containing the sunitinib was contacted with 100 µL dimethylformamide. The eluent was analyzed by high performance liquid chromatography-tandem mass spectrometry. Reasonable validation data consisting of low limits of detection (0.14, 0.35, and 0.70 ng mL-1 in deionized water, plasma, and urine) and quantification (0.48, 1.2, and 2.4 ng mL-1 in deionized water, plasma, and urine, respectively), a wide linear range of the calibration curve (0.48-200, 1.2-200, and 2.4-100 ng mL-1 in deionized water, plasma, and urine, respectively) good extraction recovery (76 %), and low relative standard deviations for inter- and intra-day precisions (6.9 %) were obtained by the method. Eventually, the proposed procedure was effectively implemented on both plasma and urine samples, yielding successful outcomes.


Asunto(s)
Límite de Detección , Estructuras Metalorgánicas , Extracción en Fase Sólida , Sunitinib , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Extracción en Fase Sólida/métodos , Cromatografía Líquida de Alta Presión/métodos , Sunitinib/sangre , Sunitinib/orina , Sunitinib/análisis , Sunitinib/química , Sunitinib/aislamiento & purificación , Humanos , Estructuras Metalorgánicas/química , Reproducibilidad de los Resultados , Modelos Lineales , Nanopartículas de Magnetita/química
19.
ACS Nano ; 18(19): 12453-12467, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38686995

RESUMEN

Traditional magnetic resonance imaging (MRI) contrast agents (CAs) are a type of "always on" system that accelerates proton relaxation regardless of their enrichment region. This "always on" feature leads to a decrease in signal differences between lesions and normal tissues, hampering their applications in accurate and early diagnosis. Herein, we report a strategy to fabricate glutathione (GSH)-responsive one-dimensional (1-D) manganese oxide nanoparticles (MONPs) with improved T2 relaxivities and achieve effective T2/T1 switchable MRI imaging of tumors. Compared to traditional contrast agents with high saturation magnetization to enhance T2 relaxivities, 1-D MONPs with weak Ms effectively increase the inhomogeneity of the local magnetic field and exhibit obvious T2 contrast. The inhomogeneity of the local magnetic field of 1-D MONPs is highly dependent on their number of primary particles and surface roughness according to Landau-Lifshitz-Gilbert simulations and thus eventually determines their T2 relaxivities. Furthermore, the GSH responsiveness ensures 1-D MONPs with sensitive switching from the T2 to T1 mode in vitro and subcutaneous tumors to clearly delineate the boundary of glioma and metastasis margins, achieving precise histopathological-level MRI. This study provides a strategy to improve T2 relaxivity of magnetic nanoparticles and construct switchable MRI CAs, offering high tumor-to-normal tissue contrast signal for early and accurate diagnosis.


Asunto(s)
Medios de Contraste , Imagen por Resonancia Magnética , Compuestos de Manganeso , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Animales , Ratones , Medios de Contraste/química , Humanos , Campos Magnéticos , Glutatión/química , Óxidos/química , Línea Celular Tumoral , Glioma/diagnóstico por imagen , Glioma/patología , Tamaño de la Partícula , Nanopartículas de Magnetita/química
20.
Bioprocess Biosyst Eng ; 47(5): 737-751, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38607415

RESUMEN

Enzymatic hydrolysis plays a pivotal role in transforming lignocellulosic biomass. Addressing alternate techniques to optimize the utilization of cellulolytic enzymes is one strategy to improve its efficiency and lower process costs. Cellulases are highly specific and environmentally benign biocatalysts that break down intricate polysaccharides into simple forms of sugars. In contrast to the most difficult and time-consuming enzyme immobilization processes, in this research, we studied simple, mild, and successful techniques for immobilization of pure cellulase on magnetic nanocomposites using glutaraldehyde as a linker and used in the application of sorghum residue biomass. Fe3O4 nanoparticles were coated with chitosan from the co-precipitation method, which served as an enzyme carrier. The nanoparticles were observed under XRD, Zeta Potential, FESEM, VSM, and FTIR. The size morphology results presented that the Cs@Fe3O4 have 42.2 nm, while bare nanoparticles (Fe3O4) have 31.2 nm in size. The pure cellulase reaches to 98.07% of loading efficiency and 71.67% of recovery activity at optimal conditions. Moreover, immobilized enzyme's pH stability, thermostability, and temperature tolerance were investigated at suitable conditions. The kinetic parameters of free and immobilized enzyme were estimated as Vmax; 29 ± 1.51 and 27.03 ± 2.02 µmol min-1 mg-1, Km; 4.7 ± 0.49 mM and 2.569 ± 0.522 mM and Kcat; 0.13 s-1, and 0.89 s-1. Sorghum residue was subjected to 2% NaOH pre-treatment at 50 â„ƒ. Pre-treated biomass contains cellulose of 64.8%, used as a raw material to evaluate the efficiency of reducing sugar during hydrolysis and saccharification of free and immobilized cellulase, which found maximum concentration of glucose 5.42 g/L and 5.12 g/L on 72 h. Thus, our study verifies the use of immobilized pure cellulase to successfully hydrolyze raw material, which is a significant advancement in lignocellulosic biorefineries and the reusability of enzymes.


Asunto(s)
Celulasa , Quitosano , Enzimas Inmovilizadas , Nanopartículas de Magnetita , Sorghum , Quitosano/química , Enzimas Inmovilizadas/química , Celulasa/química , Sorghum/química , Nanopartículas de Magnetita/química , Estabilidad de Enzimas , Cinética , Biomasa , Hidrólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA